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ON THE ANALYSIS OF RETAINED RESIDUAL VISCOPLASTIC PETROLEUM* 

V. M. ENTOV, V. N. PANKOV and S. V. PAN'KO 

A theory to determine the magnitude of the residual petroleum possessing a limit 
gradient in strata of inhomogeneous width is constructed in a hydrostatic approx- 

imation. In the general case the problem is reduced to a plane problem of nonlinear 

filtration and can be solved by known methods. In homogeneous and layered strata, 

the analysis of retained oil blocks results in boundary value problems of nonlinear 

filtration whose singularity is the existence of not only lines in the flow domain, 

but also of domains of a constant pressure gradient in absolute value, that equals 

the limit. Retained oil analysis schemes proposed earlier for homogeneous and lay- 

ered-inhomogeneous strata /l-6/ need refinement on the basis of the general 
approach proposed. 

1. Let us examine the concluding stage of water displacing viscoplastic petroleum from 

a stratum of width H whose properties, the permeability k and the limit gradient for the 

petroleum G, vary in width 

k 2 k (z), G = G (z), 0 < z ( H (1.1) 

For simplicity, we assume that the permeability of the stratum decreases monotonically 

from the roof z = 0 to the floor z = H, and the limit gradient correspondingly increases 

monotonically so that k’(z),< 0, G’ (z)>O. 
In the stage being considered, only water whichhas first displaced the petroleum from 

everywhere where the pressure gradient is above the limit, moves in the stratum. Neglecting 

the difference in the densities of the water and the petroleum, we assume the stratum suf- 

ficiently thin, the pressure distributed hydrostatically over to the width and able to be 

characterized by a two-dimensional distribution P (5, Y) = P (G Y? 0). 
Depending on the magnitude of the pressure gradient, we take the following scheme for the 

formation of the residual petroleum blocks. The stratum is completely flushed by water in 

that domain of the stratum where the pressure gradient is larger, in absolute value, than the 
limit gradient corresponding to the least permeability, i.e., I VP (2, Y) I > G (H). Let this 
domain be D,. Where the pressure gradient is less than the limit corresponding to the great- 

est permeability, i.e., ) Vp(z, y) I<G(O), the immobile petroleum block occupies the whole 
width of the stratum (the domain L's). In the domain D, where the pressure gradient is 

subject to the inequalities G(O)< I Vp I <G(H), the whole width of the stratum is divided 

into two parts by the point z z h(z, y)determined from the equation 

G (h (~9 Y)) = FP (5, Y) I (1.2) 

One part O,<z,<h((z,y), at each of whose points the condition G(z)< IVp(s, y) I is satisfied, 
is flushed by water. The other part of the stratum h(s, y)-< z < H, for which G(z)> 1 Vp(z, y) 1, 
is occupied by the immobile petroleum block. Here h(s, y) = H in the domain D, and h(r, y) = 
0 in the domain D3. 

For the scheme used, the water motion averaged relative to the width is described by the 

following system of equations: 

‘UpI) 

divn=O, w=-zyE!L~p 1 
w = -ii s y (5, Y, 2) dz, K (1 yp I) =+- “‘p” k (z) dz (1.3) 

II 0 

Here w and li are the effective velocity and permeability, and the width of the flushed 

part of the stratum JL([ Vp I) is determined from (1.2). 
It follows from the system (1.3) that the equations of average water motion are equival- 

ent to the equations of nonlinear filtration of an incompressible fluid 

divw=O, Tp=--w (1.4) 
W 

By the hodograph transformation 
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(1.5) 

the system (1.4) is transferred into a known linear system /7/ 

ap _=- *Z(W) arl, 0 CD(w) alp 
a0 Q&qj--&y'-= at0 w'ae 

(1.6) 

The specific form of the effective filtration law @(w)is determined by the form of the 

distributions k(z) and G(Z) from (1.2) and (1.3). 

2. Let us consider the examples. We hence assume that G - k-‘/z in conformity with the 
known correlation for viscoplastic fluids. 

Let the dependences k(z) and G(z) be 

k (z) = k, (1 + z / zJ-~, G (z) = G, (1 f z / zO) (2.1) 

Here z0 is a certain parameter and G, = G(0). We obtain the following effective filtra- 

tion law from (1.2) and (1.3): 

(2.2) 

Therefore, for the permeability and limit gradient distributions in the form (2.1) the 

problem of seeking the petroleum block in an average formulation reduces to the known problem 

with a limit gradient for a homogeneous fluid. 

The validity of the following correspondences 

k(z) = k, ch-z (z / z,), G (z) = Go ch (z / z,J, @ (UJ) = /A (UJ" + ho2)1/; / Ko (2.3) 

can be seen analogously. 

If the dependence k(z)allows of the parametric representation 

Liz 
h 

;ii;=- 
“; sh+eht 

( 
=I, k(h) = c&&---, G(h) -= g cha -& 

0 

then the corresponding effective filtration law has the form 

@ (w) = F(U+ + h,2ia)a/z / K, (2.4) 

Letting the parameter atend to zero, we obtain 

@ (w) = Go, w< ho, @ (4 = pw / Km UJ > 10 (2.5) 

which corresponds to a homogeneous stratum of permeability k,. 

In all the examples, the relationships for the effective filtration law are valid for 

velocities less than hs = pL-' KHG(H), hence Q (w) <G(H). For high velocities, the stratum 

is completely flushed by water, and the effective permeability ceases to vary as the intensity 

of the motion changes, and the corresponding filtration law for the average motion turns out 

to be linear in the high velocity domain 

O(w) =E, KH=$\k(z)dz, l~~l>,G(fO 
; 

In cases when the total motion intensity is not large, the flushed zones are localized 

completely near the boreholes. If their influence on the process of petroleum block formation 
can be neglected, then the average motion in the whole stratum is described by a nonlinear 

filtration law of the form (2.2)- (2.5). Formally, this corresponds to the asymptotic H+ 00. 
Numerous solutions constructed earlier for nonlinear filtration problems can here be used to 

estimate the petroleum block sizes. 
We obtain an estimate for the volume of the flushed part of the stratum. The latter 

evidently equals 

V=SSh(s,y)dtdy=SSh(w)J(w,e)dwde 
D A 

(2.6) 

where D is the flow domain in the physical plane, Ais its corresponding domain in the hodo- 

graph plane, and J(U),@ is the Jacobian of the transition. Relying on (1.5) and (1.61, we 

convert (2.6) to the form 

Since h(w)/ w@(w)< MH, where III = p/(k,GoZ), the upper bound for the volume of the flush- 

ed part of the stratum hence follows from (2.6): 
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where 1 is the boundary of the flow domain in the hodograph plane. In particular, we have for 

an equal-intensity source-sink system in an unbounded stratum 

v _( PC? Ipz - ~1 I Hi &&“J 

where ps and p, are the pressure on the borehole and on the supply contour, respectively. 

3. Let us consider the case of a homogeneous stratum k = con&. For such a stratum 

G(O) = G(H) = G , and the width of the part of the stratum flushed by the water is h (I VP 111 
and it and the effective permeability K(lVp I) b ecome piecewise-constant functions of the 

pressure gradient 

h(lVp I) =O, K(lVp I) =O, IVP I<G 

h(lVpI)=H, K(IVpl)=k IVPI>G 

The deduction was hence made earlier /l- 6/ that when the pressure gradient reached the 
value G, equal to the limit, the width of the flushed layer changed from 

w 

ti 

zero to the full width of the stratum by a jump on a certain line of the 

physical plane. This corresponds to an effective filtration law of the 

form: 

?+ --- CD (w) = Pi / k, w > h; 0 < Q, (w) < G, w = 0, X = Id;/ p 
/ 

/ / 
/ 0 

(the discontinuous law of M. G. Alishaev et al. /l/j. However, the pas- 

sage to the limit from the flow scheme described above in strata with con- 
6 tinuously varying permeability to flows in homogeneous strata results in 

Fig.1 the deduction that the condition that the abosolute value of the pressure 

gradient equals the limit is not satisfied on a line (the boundary of the 

petroleum block), but in a domain in which the width of the flushed layer 

h(r,y) is a continuous function of the water flow. As the effective filtration velocity 

changes from zero to h- the width of the flushed layer runs through all values between 0 and H. 
The corresponding effective filtration law has the form (Fig-l) 

@(w) = ~zU/k, zu>h; I-G, O<w<a,, O,(O(w)<G, w =0 (3.1) 

In contrast to the discontinuous law, the filtration law (3.1) permits consideration of 

the flow even in a domain of velocities w less than h. 
Therefore, as blocks of residual petroleum form in homogeneous strata, the whole flow 

domain in the physical plane decomposed into three subdomains in the general case: the domain 

D1 of a completely flushed stratum; the domain D, of a partially flushed stratum in which 

the absolute value of the pressure gradient is constant and equal to the limit; the domain D, 
in which the petroleum block occupies the whole width of the stratum and there is no water 

motion. 

We have for each domain 

Ap (r, Y) =z 0, h (x, Y) = N, (5. Y) ED,, I VP (z, y) I == G, div (h (5, y) VP/G) = 0. (z, Y) ED, (3.2) 

LL' (5, Y) L 0, IE- (z, Y) 10, (5, Y) E 03 

The solutions merge on the domain boundaries by means of conditions on the continuity of 
the pressure, the flow, and the width h (59 Y). 

On going over to the hodograph plane (LV, 6) , the domain D, is mapped into the domain A1 

in the half-plane ~)h, the domain D, into the domain A, in the strip 0< w<h, and the 

domain D, into the line segment 1U L 0. In the corresponding domains of the hodograph plane, 

(3.2) take the form 

w /a drr a!, 
arr=-F-z-’ x--$$, (tcl,B)~A,, $=@, +s=-$$ (w,O)tzAt (3.3) 

from which we have the solution 

$={(O), p@,9)=-q+,(o) (3.4) 

for the constant pressure gradient domain AZ, where f(e) and rp(fl) are unknown functions. 

The variables (zu, 6) and the physical coordinates (z, y) are interconnected for this domain by the 
relationships (here and henceforth z = 5 + iy) 

2 (@: 0) : 2 (h, 6) + .@f (Cl) (1 / II) - 1 / x\ (3.5) 

It follows from (3.5) that for f'(O)# 0 the domain A, in the physical plane corresponds 

to the domain in which thestreamlines are straight lines, the pressure varies linearly along 
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them, and the effecitive velocity zc and the flushed part of the stratum h are determined by 

the expressions 

w = (l/h + I 2 (w, e) - z (h, El) 1 / f’ (El))-‘, h : EIW / h 
(3.6) 

If j' (e) = 0, then the corresponding part of the domain A, is mapped in the physical 

plane into a line that is a segment of a streamline. The fluid flow at these points is direct- 
ed along the tangent to the line lVp\ =G, for which the width of the flushed part of the 

stratum h(s,y) changes by a jump from 0 to H when it is crossed. 

In other words, the problem formulation used earlier with the jumplike change in the 
flushed width, turns out to be a corollary of the formulation elucidated here if and only if 

theunknownboundary is a streamline. A retrospective analysis shows that the situation is 

precisely this in almost all problems solved earlier, and in particular, within the framework 

of the refined formulation, all solutions presented in /l-33/, are meaningful with the excep- 

tion of the solutions of Figs.7.19 and 7.20 in /3/. Meanwhile, the refined formulation even 

permits investigation of such flow configurations as did not previously allow of examination. 

Let us note that the assumption of constancy of the absolute value of the pressure grad- 

ient, equal to the limit in a domain rather than on a line, was used in /8/, however, it was 

simultaneously assumed that there is no flow in this domain. 

4. Let us present an example of analyzing in immobile petroleum block for the flow to 

a single borehole located within the supply contour, along which constant pressure is given. 

Let the supply contour be a circle of radius R, the borehole be located eccentrically at a 

distance p from the center of the supply contour, and its debit equal to Q per unit width of 

the stratum. 

Leaving a detailed parametric analysis of the problem aside, we note that a whole series 

of possible pictures of the pertroleum block locations occurs during solution which result in 

different boundary value problems. For all the cases, the flow in the constant pressure grad- 

ient domain possesses stillanother property in addition to those noted earlier: the isobars 

are concentric circles, and the streamlines are segments of rays issuing from the origin. 

Let us examine the range of parameters in greater detail when the condition O<w<h 
is satisfied everywhere on the supply contour. In this case the domain D,of the completely 

flushed stratum is separated from the supply contour by the constant pressure gradient domain 

Da in which part of-the stratum width is occupied by the immobile petroleum block. 

For the case under consideration, the solution of the problem can be obtained as follows. 

We selectthe coordinate system (I, y) so that the origin coincides with the center ofthesupply 

contour, and the borehole has the coordinates 5 =--p, y=o. Using the solution (3.4) in the 

constant gradient domain, we obtain that the problem in the hodograph plane reduces to the 

following boundary value problem for a stream function in a half-strip: 

The solution of (4.1) is found in elementary functions 

Q h 
$(w,e) =-8+.4;sinfl 

2s (4.2) 

where the unknown constant A = -2)9 is determined from the continuity condition for the 

physical coordinates upon crossing the line w=l. The equation for this latter inthephysical 

plane has the form 

r(i,t))=+(&-21PcosB) (4.3) 

From the relations (4.2) and (4.3) we obtain an expression for the width of the flushed 

part of the stratum in the constant pressure gradient domain, as well as the ratio between the 

volume of the immobile petroleum block and the volume of the stratum 

It is seen from (4.2) and (4.3) that the solution obtained is valid under the following 

constraints on the problem parameters: 

Q 1 P 
+kG 4nRk ----<T--T 

The results of computing one of the variants of this case for Q / %jrhR = 0.5 and p i R = 0.2 

are presented in Fig.2, where the boundaries of the constant pressure gradient domain and the 
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stream lines within this domain are shown above, and the section of the stratum along the t 

axis is below. The domain occupied by the immobile petroleum block is shaded. 

5. Let us now consider a layered stratum with piecewise-constant distribution of the 

permeability (and, therefore, a limit gradient for petroleum) over the width. Let the number 

of interstratifications of constant permeability ki be n, let each possess the width Hiand 

the limit gradient Gi, where k,>k,>. . .>ki and G1<G,<. . .<G,,. 
Again considering the layered stratum as the limit 

case of strata with continuous permeability distribu- 

tion along the width, we obtain that the formulation 

of the problem of determining the residual petroleum 

blocks for layered strata is analogous to that forhomo- 

geneous strata, and has the form 

A P (5, Y) = 0, Gj < I VP (2, Y) I < Gj+x 

Fig.2 

K (5, y) = Kj = H-’ $ kiHi, 
i-1 

h(s, y) =hj= i$I Hi 

j = 1,2, . . .,n, (5, y) E DP 

I grad p (x,y) I = Gj, div (K (2, Y) grad P (5, Y)) = 0 

K (G Y) 1 Kj_1 + (kj / H) h (5, y)~ Ki-I < K (5, Y) < Kj 

hj-1 < h (X9 y) < hj, j = 12, * . *jn* (x9 Y) E D*‘j) 

to (2, Y) = 0, h (2, Y) = 0, (2, Y) ED, 

On the domain boundaries, the solutions are again merged by the continuity conditions on 

the pressure, the flow, and the width of the flushed part of the stratum. Therefore, a domain 

constant pressure gradient D:(i), equals to the limit, and the domain D1ti) of constant width 

of the flushed part h(z, y) = h, correspond to each substratum in the flow domain in the 

formation of residual petroleum blocks. The whole flow domain is now divided into 2n + 1 
subdomains. 

The effective filtration law for layered strata is a piecewise-linear function 

@ (w) = PW / Kit hi < w < A, t @ (w) = Git Ai-1 < w < hi 9 0 Q CD (w) < G1, w = 0 

K. Ki 
hi= ‘Gi, a\i=TGi+l, 

P 
A0=0, h,=oo, i=1,2 ,..., n 

The characteristic feature of this law is the presence of n constancy sections to each 

of which a domain D,(I), where the streamlines are straight lines and the equations of motion 

are integrated, corresponds in the physical plane. The solution has the form (3.4), (3.5), 

where w = hi must be substituted instead of w=h. 

Fig.3 

Rig.4 
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6. Let us determine the shape of the residual petroleum block for a flow produced by 
a source and sink of equal intensity Q in a boundless stratum. Let the stratum consist of 
two substrata, and let the limit gradient for the petroleum in the more permeable substratum 
equal zero C, =O, i.e., the effective filtration law has the form 

Q(u)) = I.LWIK1. 0 < W < A,, Q(w) = G,, A1 < UJ <I,, a,(W) = P'WIK,. a, < m < M 

The first quadrant is the syunnetry element of the problem in the physical plane (23 Y) 
Using the fact that the solution is known in the constant pressure gradient domain, and going 
over to the hodograph plane, we arrive at the following problem for the streamfunction(Fig.3): 

The parameter 10~ in (6.1) is determined from the additional condition that the distance 
between the source and sink in the physical plane was equal to the given value. After having 
solved problem (6.1), by integrating the formulas for the transition to the physical plane 
(z,Y), we find the boundary of the constant pressure gradient domain, then the width of the 

flushed part of the stratum, and we thereby determine the shape of the immobile petroleumblock. 
The solution is constructed numerically in dimensionless variables. The quantities a 

and Q/a are selected as length and velocity scales, and the solution hence depends on two 
dimensionless parameters 

xah,C:, 
ezCLQ, a= 

k,H, + k,H, 
k,H, 

Here e is a dynamic parameter and b characterizes the degree of inhomogeneity of the 
stratum. 

The results of computing two versions corresponding to the parameters a=0.4 and 6 = 5(a) 
and 6=100 (b) are presented in Fig.4 as solid lines. Shown for comparison by dashed lines 
are the residual petroleum blocks obtained within the framework of an approximate approach 
when the constant pressure gradient domain is replaced by lines. The problem in such a formul- 
ation is solved in /4/ by potential theory methods. It follows from the comparison that the 
petroleum block boundaries obtained in /5/ canbe thelowerestimate for the determination of the 
magnitude of the immobile petroleum. 

Analysis of the example for 6=100, when the effective width of the more permeable sub- 
stratum is small compared to the effective width of the second substratum, shows that (Fig.Bb) 
when the pressure gradient G, is reached, the stratum at once is blocked almost completely 
by the immobile petroleum. It is interesting to make a comparison with the limit case 6-00 

corresponding to a homogeneous stratum. The constant pressure gradient domain in this case 
degenerates into a line separating the domain of the completely flushed stratum from the domain 
in which the strata are occupied by immobile petroleum over the whole width. Such a problem 
is solved in /l/, where an expression is obtained for the boundary of the dead zone (or the 
petroleum blocks in the treatment used here). This solution is shown by dash-dot lines in 
Fig.4a. As should have been expected, the results for 6 IOU and 6 .= co practically agree. 
This latter fact permits using the solution obtained in /l/ to estimate the immobile petroleum 
blocks in two-layered strata with small effective width of the more permeable substratum. 

REFERENCES 

1. ALISHAEV M.G., VAKHITOV G-G., GEKHTMAN M.M., and GLUMOV I.F., On some features of the 
filtration of Devonian stratum petroleum at lowered temperatures. Izv. Akad. Nauk SSSR, 
Mekhan. Zhidk. Gas, No.3, 1966. 

2. ALISHAEV M.G., BERNADINER M.G., and ENTOV V.M., Influence of the limit gradient on the loss 
of petroleum during displacement by water. In: Questions of Nonlinear Filtrations and 
Petroleum-Gas Elimination during the Development of Petroleum and Gas Deposits. Moscow, 
Izd. Inst. Geologii i Razrabotki Goriuchikh Iskopaemykh, 1972. 

3. BEPNADINER M.G., and ENTOV V.M , Hydrodynamic Theory of Filtration of Anomalous Fluids, 
Moscow, "Nauka", 1975. 



Retained residual viscoplastic petroleum 603 

4. KOTLIAR L.M. and SKVORTSOV E.V., On the filtration of a viscoplastic fluid to a sink in 
a curvilinear stratum. Dokl. Akad. Nauk SSSR, Vo1.209, No.5, 1973. 

5. ENTOV V-M., MALAKHOVA T.A., PANKOV V.N., and PAN'KO S.V., Calculation of the limit-equili- 
brium of retained viscoplastic oil extracted from a nonuniform stratified layer by water, 
PMM, Vo1.44, No.1, 1980. 

6. KOTLIAR L.M. and SKVORTSOV E.V., Plane Stationary Problems of Filtration of a Fluid with 
Initial Gradient. Izd. Kazansk. Univ, 1978. 

7. KHRISTIANOVICH S.A., Motion of ground water motion not obeying Darcy's law, PMM, Vo1.4, 
No.1, 1940. 

8. FEDOROV A.V. and FOMIN V.M., Mathematical model of gas motion in coal strataforanonlinear 
filtration law. In: Numerical Methods of the Mechanics of a Continuous Medium, Vol.4, 
N0.5, Novosibirsk, Izd. Vychisl. Tsentr Novosibirsk. Itdel. Akad. Nauk SSSR, 1973. 

Translated by M.D.F. 


